RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2023 Volume 24, Issue 4, Pages 199–211 (Mi fpm1953)

Computation of the component group of an arbitrary real algebraic group

D. A. Timashev

Lomonosov Moscow State University

Abstract: We compute explicitly the group of connected components $\pi_0G(\mathbb{R})$ of the real Lie group $G(\mathbb{R})$ for an arbitrary (not necessarily linear) connected algebraic group $G$ defined over the field $\mathbb{R}$ of real numbers. In particular, it turns out that $\pi_0G(\mathbb{R})$ is always an elementary Abelian $2$-group. The result looks most transparent in the cases where $G$ is a linear algebraic group or an Abelian variety. The computation is based on structure results on algebraic groups and Galois cohomology methods.

UDC: 512.74+512.752+512.812


 English version:
Journal of Mathematical Sciences (New York), 2024, 284:4, 545–553


© Steklov Math. Inst. of RAS, 2026