RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2021 Volume 23, Issue 4, Pages 73–86 (Mi fpm1910)

This article is cited in 1 paper

Jordan–Kronecker invariants for Lie algebras of small dimensions

A. Yu. Groznova

Lomonosov Moscow State University, Moscow, Russia

Abstract: In this paper, Jordan–Kronecker invariants are calculated for all nilpotent $6$- and $7$-dimensional Lie algebras. We consider the Poisson bracket family, depending on the lambda parameter on a Lie coalgebra, i.e., on the linear space dual to a Lie algebra. For some space $\mathfrak{g}$ proposed in the paper, two skew-symmetric matrices are defined for all points $x$ on this linear space. To understand the behaviour of the matrix pencil $(A - \lambda B)(x)$, we consider Jordan–Kronecker invariants for this pencil and how they change with $x$ (the latter is done for $6$-dimensional Lie algebras).

UDC: 512.812


 English version:
Journal of Mathematical Sciences (New York), 2023, 269:4, 492–502


© Steklov Math. Inst. of RAS, 2026