RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2020 Volume 23, Issue 2, Pages 163–183 (Mi fpm1888)

On the multiple conjugacy problem in group $F/{N_1\cap N_2}$

O. V. Kulikova

Moscow State University, Moscow, Russia

Abstract: Let $F$ be a free group generated by a finite alphabet $A$. Let $N_1$ ($N_2$) be the normal closure of a finite non-empty symmetrized set $R_1$ (respectively, $R_2$) of elements in $F$. Earlier, one obtained the conditions sufficient for the solvability of the conjugacy problem in the group $F/N_1\cap N_2$. The present paper is a continuation of this research and is devoted to the solvability of the multiple conjugacy problem in $F/{N_1\cap N_2}$. In particular, we get that if $R_1\cup R_2$ satisfies the small cancellation condition $C'(1/6)$, then the multiple conjugacy problem is solvable in $F/{N_1\cap N_2}$.

UDC: 512.54.05


 English version:
Journal of Mathematical Sciences (New York), 2022, 262:5, 702–717


© Steklov Math. Inst. of RAS, 2026