RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2020 Volume 23, Issue 1, Pages 89–94 (Mi fpm1868)

Asymptotic behavior of large deviation probabilities for a simple oscillating random walk

E. L. Vetrova

Lomonosov Moscow State University, Moscow, Russia

Abstract: This paper considers simple oscillating random walks with $\tilde{S}_n=\sum\limits^n_{i=1} \tilde{X}_i$, under the assumption that $\mathbf P (\tilde{X}_{n+1}=1\mid \tilde{S}_n>0)=p>1/2$. We show that the asymptotic behavior of probability to reach high level for the oscillating random walk and a standard random walk are similar up to a constant multiplier. The asymptotics for the maximum of a random walk and for the moment of the first exit beyond the high level are obtained.

UDC: 519.214.8


 English version:
Journal of Mathematical Sciences (New York), 2022, 262:4, 452–456


© Steklov Math. Inst. of RAS, 2026