RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2019 Volume 22, Issue 6, Pages 263–272 (Mi fpm1863)

This article is cited in 1 paper

Local geometry of the Gromov–Hausdorff metric space and totally asymmetric finite metric spaces

A. M. Filin

Moscow State University, Moscow, Russia

Abstract: In the present paper, we investigate the structure of the metric space $\mathcal M$ of compact metric spaces considered up to an isometry and endowed with the Gromov–Hausdorff metric in a neighbourhood of a finite metric space, whose isometry group is trivial. It is shown that a sufficiently small ball in the subspace of $\mathcal M$ consisting of finite spaces with the same number of points centered at such a space is isometric to a corresponding ball in the space $\mathbb R^N$ endowed with the norm $|(x_1, \dots, x_N ) | = \max\limits_{i} |x_i|$. Also an isometric embedding of a finite metric space into a neighbourhood of a finite asymmetric space in $\mathcal M$ is constructed.

UDC: 514.13+519.173


 English version:
Journal of Mathematical Sciences (New York), 2021, 259:5, 754–760


© Steklov Math. Inst. of RAS, 2026