RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2019 Volume 22, Issue 6, Pages 253–261 (Mi fpm1862)

Bifurcations of minimal fillings for four points on the Euclidean plane

E. I. Stepanova

Lomonosov Moscow State University, Moscow, Russia

Abstract: A minimal filling of a finite metric space is a weighted graph of a minimal possible weight spanning this space so that the weight of any path in it is not less than the distance between its ends. Bifurcation diagrams of types and the weight of minimal fillings for four points of the Euclidean plane are built in the present work.

UDC: 514.77+519.176+515.165.7


 English version:
Journal of Mathematical Sciences (New York), 2021, 259:5, 748–753


© Steklov Math. Inst. of RAS, 2026