RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2019 Volume 22, Issue 6, Pages 169–182 (Mi fpm1858)

This article is cited in 1 paper

Superintegrable Bertrand magnetic geodesic flows

E. A. Kudryavtseva, S. A. Podlipaev

Moscow State University, Moscow, Russia

Abstract: The problem of description of superintegrable systems (i.e., systems with closed trajectories in a certain domain) in the class of rotationally symmetric natural mechanical systems goes back to Bertrand and Darboux. We describe all superintegrable (in a domain of slow motions) systems in the class of rotationally symmetric magnetic geodesic flows. We show that all sufficiently slow motions in a central magnetic field on a two-dimensional manifold of revolution are periodic if and only if the metric has a constant scalar curvature and the magnetic field is homogeneous, i.e., proportional to the area form.

UDC: 514.853+517.938.5


 English version:
Journal of Mathematical Sciences (New York), 2021, 259:5, 689–698


© Steklov Math. Inst. of RAS, 2026