RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2015 Volume 20, Issue 6, Pages 189–206 (Mi fpm1693)

On independent families of normal subgroups in free groups

O. V. Kulikova

Bauman Moscow State Technical University

Abstract: Consider a presentation $\mathcal{P}=\Bigl\langle\mathbf x\mid \bigcup\limits_{i=1}^n \mathbf r_i\Bigr\rangle$. Let $\mathbf R_i$ be the normal closure of the set $\mathbf r_i$ in the free group $\mathbf F$ with basis $\mathbf x$, $\mathcal{P}_i=\langle \mathbf{x}\mid\mathbf r_i\rangle$, $\mathbf N_i = \prod\limits_{j\neq i}\mathbf R_j$. In this paper, using geometric techniques of pictures, generators for $\frac{\mathbf R_i\cap \mathbf N_i}{[\mathbf R_i, \mathbf N_i]}$, $i=1,\ldots,n$, are obtained from a set of generators over $\{\mathcal P_i\mid i=1,\ldots, n\}$ for $\pi_2(\mathcal{P})$. As a corollary, we get a sufficient condition for the family $\{\mathbf R_1,\ldots,\mathbf R_n\}$ to be independent.

UDC: 512.543.1


 English version:
Journal of Mathematical Sciences (New York), 2018, 233:1, 125–136


© Steklov Math. Inst. of RAS, 2026