RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1996 Volume 2, Issue 2, Pages 619–624 (Mi fpm157)

This article is cited in 2 papers

Short communications

Process of successive cleaning

I. A. Kurkova

M. V. Lomonosov Moscow State University

Abstract: A Poisson stream of particles arrives to a half-line $[0;\infty)$ with rate $\lambda$ and mean density 1. A server moves on a half-line at unit speed to the right, stopping to perform service of every particle encountered. The service times are all taken to be mutually independent and exponentially distributed with mean $\mu$. At the initial moment the server is in zero. We study $Y(T)$ — its position at the moment $T$. The main result is the following:
$$ \lim_{T\to\infty}\frac{Y(T)}{\ln T} =\frac{\mu}{\lambda}\qquad\mboxa.s. $$


UDC: 519.217

Received: 01.09.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026