RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2013 Volume 18, Issue 2, Pages 197–207 (Mi fpm1510)

A method for solving the $p$-adic Kolmogorov–Feller equation for an ultrametric random walk in an axially symmetric external field

O. M. Sizovaab

a N. N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
b M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: A method for solving the Kolmogorov–Feller equation for an ultrametric random walk in an axially symmetric external field is considered. The transition function $w(y\mid x)$, $x,y\in\mathbb Q_p$, of the process under consideration is nonsymmetric and depends on the norm of $p$-adic arguments. It is proved for the transition functions of the form $w(y\mid x)=\rho(|x-y|_p)\varphi(|x|_p)$ that solving the $p$-adic Kolmogorov–Feller equation for a random walk in a $p$-adic ball of radius $p^R$ reduces to solving a system of $R+1$ ordinary differential equations.

UDC: 517.958+519.2


 English version:
Journal of Mathematical Sciences (New York), 2014, 203:6, 884–891

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026