RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2013 Volume 18, Issue 2, Pages 119–124 (Mi fpm1503)

This article is cited in 3 papers

Estimates for the Steiner–Gromov ratio of Riemannian manifolds

V. A. Mishchenko

M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: The Steiner–Gromov ratio of a metric space $X$ characterizes the ratio of the minimal filling weight to the minimal spanning tree length for a finite subset of $X$. It is proved that the Steiner–Gromov ratio of an arbitrary Riemannian manifold does not exceed the Steiner–Gromov ratio of the Euclidean space of the same dimension.

UDC: 519.711.7


 English version:
Journal of Mathematical Sciences (New York), 2014, 203:6, 833–836

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026