RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2012 Volume 17, Issue 8, Pages 63–76 (Mi fpm1472)

This article is cited in 6 papers

Absolute nil-ideals of Abelian groups

E. I. Kompantseva

Moscow State Pedagogical University

Abstract: It is known that in an Abelian group $G$ that contains no nonzero divisible torsion-free subgroups the intersection of upper nil-radicals of all the rings on $G$ is $\bigcap_ppT(G)$, where $T(G)$ is the torsion part of $G$. In this work, we define a pure fully invariant subgroup $G^*\supseteq T(G)$ of an arbitrary Abelian mixed group $G$ and prove that if $G$ contains no nonzero torsion-free subgroups, then the subgroup $\bigcap_ppG^*$ is a nil-ideal in any ring on $G$, and the first Ulm subgroup $G^1$ is its nilpotent ideal.

UDC: 512.541
BBK: 0https://edit.mathnet.ru/gifs/star.gif


 English version:
Journal of Mathematical Sciences (New York), 2014, 197:5, 625–634

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026