RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2012 Volume 17, Issue 3, Pages 39–49 (Mi fpm1411)

This article is cited in 6 papers

Some congruences on trioids

A. V. Zhuchok

National Taras Shevchenko University of Kyiv, Ukraine

Abstract: We present the least idempotent congruence on the trioid with a commutative operation, the least semilattice congruence on the trioid with an idempotent operation, and the least separative congruence on the trioid with a commutative operation. Also we construct different examples of trioids.

UDC: 512.57+512.579


 English version:
Journal of Mathematical Sciences (New York), 2012, 187:2, 138–145

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026