RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2010 Volume 16, Issue 5, Pages 139–160 (Mi fpm1343)

On zeta functions and families of Siegel modular forms

A. A. Panchishkin

University of Grenoble I — Joseph Fourier, France

Abstract: Let $p$ be a prime, and let $\Gamma=\mathrm{Sp}_g(\mathbb Z)$ be the Siegel modular group of genus $g$. The paper is concerned with $p$-adic families of zeta functions and $L$-functions of Siegel modular forms, the latter are described in terms of motivic $L$-functions attached to $\mathrm{Sp}_g$; their analytic properties are given. Critical values for the spinor $L$-functions are discussed in relation to $p$-adic constructions. Rankin's lemma of higher genus is established. A general conjecture on a lifting of modular forms from $\mathrm{GSp}_{2m}\times\mathrm{GSp}_{2m}$ to $\mathrm{GSp}_{4m}$ (of genus $g=4m$) is formulated. Constructions of $p$-adic families of Siegel modular forms are given using Ikeda–Miyawaki constructions.

UDC: 511.38


 English version:
Journal of Mathematical Sciences (New York), 2012, 180:5, 626–640

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026