RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2010 Volume 16, Issue 5, Pages 31–39 (Mi fpm1335)

This article is cited in 1 paper

Remarks on linear independence of $q$-harmonic series

P. Bundschuh

University of Cologne, Germany

Abstract: For any rational integer $q$, $|q|>1$, the linear independence over $\mathbb Q$ of the numbers $1$, $\zeta_q(1)$, and $\zeta_{-q}(1)$ is proved; here $\zeta_q(1)=\sum_{n=1}^\infty\frac1{q^n-1}$ is so-called $q$-harmonic series or $q$-zeta-value at the point $1$. Besides this, a measure of linear independence of these numbers is established.

UDC: 511.462


 English version:
Journal of Mathematical Sciences (New York), 2012, 180:5, 550–555

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026