RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1996 Volume 2, Issue 1, Pages 103–111 (Mi fpm132)

On diagonalizability of regular matrices over rings

T. V. Golovacheva

M. V. Lomonosov Moscow State University

Abstract: Some results on the problem of the diagonalizability of an arbitrary von Neumann regular matrix over an associative ring with unit are proved. There are constructed two examples of rings which refute the next conjecture of J. Van-Geel and D. Huylebrouck: if $R$ is an ID-ring (i.e. all idempotent matrices over $R$ are diagonalizable) then every von Neumann regular matrix over $R$ is diagonalizable.

UDC: 512.552

Received: 01.09.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026