RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2010 Volume 16, Issue 2, Pages 163–181 (Mi fpm1317)

This article is cited in 2 papers

Lie jets and symmetries of prolongations of geometric objects

V. V. Shurygin

Kazan State University

Abstract: The Lie jet $\mathcal L_\theta\lambda$ of a field of geometric objects $\lambda$ on a smooth manifold $M$ with respect to a field $\theta$ of Weil $\mathbf A$-velocities is a generalization of the Lie derivative $\mathcal L_v\lambda$ of a field $\lambda$ with respect to a vector field $v$. In this paper, Lie jets $\mathcal L_\theta\lambda$ are applied to the study of $\mathbf A$-smooth diffeomorphisms on a Weil bundle $T^\mathbf AM$ of a smooth manifold $M$, which are symmetries of prolongations of geometric objects from $M$ to $T^\mathbf AM$. It is shown that vanishing of a Lie jet $\mathcal L_\theta\lambda$ is a necessary and sufficient condition for the prolongation $\lambda^\mathbf A$ of a field of geometric objects $\lambda$ to be invariant with respect to the transformation of the Weil bundle $T^\mathbf AM$ induced by the field $\theta$. The case of symmetries of prolongations of fields of geometric objects to the second-order tangent bundle $T^2M$ are considered in more detail.

UDC: 514.76


 English version:
Journal of Mathematical Sciences (New York), 2011, 177:5, 758–771

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026