RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2010 Volume 16, Issue 2, Pages 139–146 (Mi fpm1314)

This article is cited in 7 papers

Almost $C(\lambda)$-manifolds

S. V. Kharitonova

Orenburg State University

Abstract: In this paper, we study almost $C(\lambda)$-manifolds. We obtain necessary and sufficient conditions for an almost contact metric manifold to be an almost $C(\lambda)$-manifold. We prove that contact analogs of A. Gray's second and third curvature identities on almost $C(\lambda)$-manifolds hold, while a contact analog of A. Gray's first identity holds if and only if the manifold is cosymplectic. It is proved that a conformally flat, almost $C(\lambda)$-manifold is a manifold of constant curvature $\lambda$.

UDC: 514.76


 English version:
Journal of Mathematical Sciences (New York), 2011, 177:5, 742–747

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026