RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2010 Volume 16, Issue 1, Pages 151–155 (Mi fpm1297)

This article is cited in 3 papers

Hausdorff metric on faces of the $n$-cube

G. G. Ryabov

M. V. Lomonosov Moscow State University

Abstract: The Hausdorff metric on all faces of the unit $n$-cube ($\mathrm I^n$) is considered. The notion of a cubant is used; it was introduced as an $n$-digit quaternary code of a $k$-dimensional face containing the Cartesian product of $k$ frame unit segments and the face translation code within $\mathrm I^n$. The cubants form a semigroup with a unit (monoid) with respect to the given operation of multiplication. A calculation of Hausdorff metric based on the generalization of the Hamming metric for binary codes is considered. The supercomputing issues are discussed.

UDC: 512.531+515.124+004.2


 English version:
Journal of Mathematical Sciences (New York), 2011, 177:4, 619–622

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026