RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2010 Volume 16, Issue 1, Pages 3–12 (Mi fpm1286)

This article is cited in 2 papers

Projective analog of Egorov transformation

M. A. Akivis

Israel

Abstract: We prove the following assertion, which is a projective analog of the well-known Egorov theorem on surfaces in the Euclidean space: a family of lines $v=\mathrm{const}$ on a surface $S$ in $\mathbf P^3$ is a basis for Egorov transformation if and only if the surface bands defined on $S$ by these lines belong to bilinear systems of plane elements. There exist a whole set of Egorov transformations that depend on one function of $v$ with this family of lines as the basis of the correspondence.

UDC: 514.76


 English version:
Journal of Mathematical Sciences (New York), 2011, 177:4, 515–521

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026