RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2009 Volume 15, Issue 1, Pages 31–51 (Mi fpm1206)

This article is cited in 3 papers

On the representation of substitutions as products of a transposition and a full cycle

A. Yu. Zubov

M. V. Lomonosov Moscow State University

Abstract: A method of solving equations of the form $g^{y_1}\cdot h\cdot g^{y_2}\cdot h\cdot\ldots\cdot g^{y_l}\cdot h\cdot g^{y_{l+1}}=\sigma$ in the symmetric group $\mathrm S_n$ is proposed, where $h$ is a transposition, $g$ is a full cycle, and $\sigma\in\mathrm S_n$. The method is based on building all sets of generalized inversions of the bottom line of the substitution $\sigma$ by means of a system of Boolean equations associated with $\sigma$. An example of solving an equation in a group $\mathrm S_6$ is given.

UDC: 512.542.74+512.543.72


 English version:
Journal of Mathematical Sciences (New York), 2010, 166:6, 710–724

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026