RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1995 Volume 1, Issue 4, Pages 1111–1114 (Mi fpm114)

This article is cited in 3 papers

Short communications

On the structure of the special linear groups over Laurent polynomial rings

V. I. Kopeiko

Kalmyckia State University

Abstract: In this note we prove the following result. Let $C$ be a regular ring such that $\mathrm{SK}(C)=0$. Then the groups $SL_r\bigl(C\bigl[[T_1,\ldots,T_m]\bigr] \left[X_1^{\pm1},\ldots,X_n^{\pm 1},Y_1,\ldots,Y_s\right]\bigr)$ are generated by elementary matrices for all integers $r\geq\max(3,\dim C+2)$.

UDC: 512.544.6+512.666

Received: 01.01.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026