RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2008 Volume 14, Issue 4, Pages 121–135 (Mi fpm1129)

This article is cited in 6 papers

One-element differential standard bases with respect to inverse lexicographical orderings

A. I. Zobnin

M. V. Lomonosov Moscow State University

Abstract: We give a simplified proof of the following fact: for all nonnegative integers $n$ and $d$ the monomial $y_n^d$ forms a differential standard basis of the ideal $[y_n^d]$. In contrast to Levi's combinatorial proof, in this proof we use the Gröbner bases technique. Under some assumptions we prove the converse result: if an isobaric polynomial $f$ forms a differential standard basis of $[f]$, then $f=y_n^d$.

UDC: 512.628.2


 English version:
Journal of Mathematical Sciences (New York), 2009, 163:5, 523–533

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026