RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1995 Volume 1, Issue 4, Pages 1101–1105 (Mi fpm112)

Short communications

Generalized identities with invertible variables for subrings of artinian rings

I. Z. Golubchik

Bashkir State Pedagogical University

Abstract: Let $R$ be a prime subring with 1 of the matrix ring $D_k$ over a skew field $D$, $k\geq1$. Suppose that the center $C$ of $R$ is infinite and elements of $C$ belong to the center of $D_k$. Let $G$ be an elementary absolute irreducible subgroup of the group $U(R)$ of invertible elements of $R$ with a nonzero generalized identity with invertible variables $f\in R\langle X,X^{-1}\rangle$, then $R$ is a $PI$-ring.

UDC: 512.544.6+512.552.4

Received: 01.04.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026