RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2007 Volume 13, Issue 8, Pages 17–41 (Mi fpm1098)

Geometric approach to stable homotopy groups of spheres. Kervaire invariants. II

P. M. Akhmet'ev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We present an approach to the Kervaire-invariant-one problem. The notion of the geometric $(\mathbb Z/2\oplus\mathbb Z/2)$-control of self-intersection of a skew-framed immersion and the notion of the $(\mathbb Z/2\oplus\mathbb Z/4)$-structure on the self-intersection manifold of a $\mathbf D_4$-framed immersion are introduced. It is shown that a skew-framed immersion $f\colon M^{\frac{3n+q}4}\looparrowright\mathbb R^n$, $0<q\ll n$ (in the $(\frac{3n}4+\varepsilon)$-range) admits a geometric $(\mathbb Z/2\oplus\mathbb Z/2)$-control if the characteristic class of the skew-framing of this immersion admits a retraction of the order $q$, i.e., there exists a mapping $\kappa_0\colon M^{\frac{3n+q}4}\to\mathbb R\mathrm P^{\frac{3(n-q)}4}$ such that this composition $I\circ\kappa_0\colon M^{\frac{3n+q}4}\to\mathbb R\mathrm P^{\frac{3(n-q)}4}\to\mathbb R\mathrm P^\infty$ is the characteristic class of the skew-framing of $f$. Using the notion of $(\mathbb Z/2\oplus\mathbb Z/2)$-control, we prove that for a sufficiently large $n$, $n=2^l-2$, an arbitrary immersed $\mathbf D_4$-framed manifold admits in the regular cobordism class (modulo odd torsion) an immersion with a $(\mathbb Z/2\oplus\mathbb Z/4)$-structure.

UDC: 515.164


 English version:
Journal of Mathematical Sciences (New York), 2009, 159:6, 761–776

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026