Abstract:
Mathematical modeling of a catalytic membrane reactor was performed for thermodynamically coupled processes using as an example the endothermic dehydrogenation of propane and the exothermic combustion (oxidation) of hydrogen. Benefits of using the membrane reactor to increase the yield of target products by shifting equilibrium was demonstrated theoretically. The effect of hydrogen combustion on the main characteristics of the endothermic dehydrogenation process was studied. The hydrogen combustion reaction makes it possible to further increase the conversion of propane and compensate for the energy consumption in the endothermic dehydrogenation process.