RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2005 Volume 39, Issue 4, Pages 69–77 (Mi faa86)

This article is cited in 1 paper

The Berezin and Gårding Inequalities

Yu. G. Safarov

King's College London

Abstract: Let $\varphi$ be a convex function on $\mathbb{C}$, let $\mathcal{L}(\sigma)$ be a pseudodifferential operator with symbol $\sigma$, let $\Lambda_\sigma$ be the set of its eigenvalues, and let $m(\lambda)$ be the multiplicity of an eigenvalue $\lambda\in\Lambda_\sigma$. Under certain natural assumptions about properties of pseudodifferential operators, we prove that $\sum_{\lambda\in\Lambda_\sigma}m(\lambda)\varphi(\lambda)\le\operatorname{Re}\operatorname{Tr}\mathcal{L}(\varphi(\sigma))+R$, where $R$ is an error term of the same order as the remainder term in the Gårding inequality.

Keywords: convex function, operator inequality.

UDC: 517.983.3

Received: 14.09.2004

DOI: 10.4213/faa86


 English version:
Functional Analysis and Its Applications, 2005, 39:4, 301–307

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026