RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2005 Volume 39, Issue 3, Pages 80–84 (Mi faa77)

This article is cited in 2 papers

Brief communications

Very Hyperbolic Polynomials

V. P. Kostov

Université de Nice Sophia Antipolis

Abstract: A real polynomial in one variable is hyperbolic if it has only real roots. A function $f$ is a primitive of order $k$ of a function $g$ if $f^{(k)}=g$. A hyperbolic polynomial is very hyperbolic if it has hyperbolic primitives of all orders. In the paper, we prove a property of the domain of very hyperbolic polynomials and describe this domain in the case of degree $4$.

Keywords: hyperbolic polynomial, very hyperbolic polynomial.

UDC: 512.622

Received: 22.10.2003

DOI: 10.4213/faa77


 English version:
Functional Analysis and Its Applications, 2005, 39:3, 229–232

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026