RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2006 Volume 40, Issue 3, Pages 66–69 (Mi faa744)

This article is cited in 1 paper

Brief communications

The Real Interpolation Method on Couples of Intersections

S. V. Astashkina, P. Sunehagb

a Samara State University
b Uppsala University

Abstract: Suppose that $(X_0,X_1)$ is a Banach couple, $X_0\cap X_1$ is dense in $X_0$ and $X_1$, $(X_0,X_1)_{\theta,q}$ ($0<\theta<1$, $1\le q<\infty$) are the spaces of the real interpolation method, $\psi\in(X_0\cap X_1)^*$, $\psi\ne 0$, is a linear functional, $N=\operatorname{Ker}\psi$, and $N_i$ stands for $N$ with the norm inherited from $X_i$ ($i=0,1$). The following theorem is proved: the norms of the spaces $(N_0,N_1)_{\theta,q}$ and $(X_0,X_1)_{\theta,q}$ are equivalent on $N$ if and only if $\theta\in(0,\alpha)\cup(\beta_\infty,\alpha_0)\cup(\beta_0,\alpha_\infty)\cup(\beta,1)$, where $\alpha$, $\beta$, $\alpha_0$, $\beta_0$, $\alpha_\infty$, and $\beta_\infty$ are the dilation indices of the function $k(t)=\mathcal{K}(t,\psi;X_0^*,X_1^*)$.

Keywords: interpolation space, interpolation of subspaces, interpolation of intersections, real interpolation method, $\mathcal{K}$-functional, dilation index of a function, weighted $L_p$-space.

UDC: 517.982.27

Received: 20.04.2005

DOI: 10.4213/faa744


 English version:
Functional Analysis and Its Applications, 2006, 40:3, 218–221

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026