RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2025 Volume 59, Issue 2, Pages 25–45 (Mi faa4245)

Interpolation by maximal surfaces

Rukmini Deya, Rahul Kumar Singhb

a International Center for Theoretical Sciences, Bengaluru, India
b Department of Mathematics, Indian Institute of Technology Patna, Bihta, India

Abstract: In this article, we use the inverse function theorem for Banach spaces to interpolate a given real analytic spacelike curve $a$ in the Lorentz–Minkowski space $\mathbb{L}^3$ to another real analytic spacelike curve $c$, which is “close” enough to $a$ in a certain sense, by constructing a maximal surface containing them. Throughout this study, the Björling problem and Schwarz's solution to it play pivotal roles.

Keywords: Plateau's problem, maximal surfaces, Björling problem.

MSC: 53A35, 53B30

Received: 05.08.2024
Revised: 02.01.2025
Accepted: 13.01.2025

DOI: 10.4213/faa4245


 English version:
Functional Analysis and Its Applications, 2025, 59:2, 126–141

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026