RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2025 Volume 59, Issue 2, Pages 112–145 (Mi faa4237)

Lagrangian subvarieties of hyperspherical varieties related to $G_2$

Nikolay Kononenko

National Research University Higher School of Economics, Moscow, Russia

Abstract: We consider two $S$-dual hyperspherical varieties of the group $G_2\times\operatorname{SL}(2)$: an equivariant slice for $G_2$ and the symplectic representation of $G_2 \times \operatorname{SL}_2$ in the odd part of the basic classical Lie superalgebra $\mathfrak{g}(3)$. For these varieties, we check the equality of the numbers of irreducible components of their Lagrangian subvarieties (zero levels of the moment maps of Borel subgroups' actions), conjectured by M. Finkelberg, V. Ginzburg, and R. Travkin.

Keywords: hyperspherical varieties, Lagrangian subvarieties, $S$-duality, equivariant Slodowy slices, twisted cotangent bundles.

MSC: 14J42, 53D20, 53D37

Received: 04.06.2024
Revised: 27.08.2024
Accepted: 02.09.2024

DOI: 10.4213/faa4237


 English version:
Functional Analysis and Its Applications, 2025, 59:2, 194–217

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026