RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2025 Volume 59, Issue 2, Pages 17–24 (Mi faa4218)

This article is cited in 1 paper

On the spectrum of the differential operators of odd order with $\mathcal{PT}$-symmetric coefficients

Oktay Veliev

Dogus University, Istanbul, Turkey

Abstract: In this paper, we consider the Bloch eigenvalues and spectrum of the non-self-adjoint differential operator $L$ generated by the differential expression of odd order $n$ with periodic $\mathcal{PT}$-symmetric coefficients, where $n>1$. We study the localizations of the Bloch eigenvalues and the structure of the spectrum. Moreover, we find conditions on the norm of the coefficients under which the spectrum of $L$ is purely real and coincides with the real line.

Keywords: $\mathcal{PT}$-symmetric coefficients, Bloch eigenvalues, Spectrum.

MSC: 34L05, 34L20.

Received: 22.03.2024
Revised: 23.05.2024
Accepted: 29.05.2024

DOI: 10.4213/faa4218


 English version:
Functional Analysis and Its Applications, 2025, 59:2, 119–125

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026