RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2025 Volume 59, Issue 2, Pages 74–111 (Mi faa4209)

Boundary classes of non-compact Riemannian manifolds and Perron's method

Alexander Kondrashov

Volgograd State University, Institute of Mathematics and Information Technologies, Volgograd, Russia

Abstract: In the present work, we consider solvability of the generalized Dirichlet problem for the linear elliptic differential equation $Lu=f$, where $L=\Delta +\langle B(x),\nabla\rangle+c(x)$ is a linear operator, ($B(x)$ is a vector field of class $\mathrm{C}(\mathcal{M})$, $c(x)\leqslant 0$, $c(x)\in \mathrm{C}(\mathcal{M})$), considered on a non-compact Riemannian manifold $(\mathcal{M},g)$. We develop the approach to this problem, based on equivalence classes, introduced by E. A. Mazepa, which allows to state the problem on non-compact manifolds in the absence of a natural geometric compactification. We introduce and study linear spaces $\mathrm{CM}_b$ and $\mathrm{CM}$ of such classes. We give a version of the well-known Perron's method with boundary data in these classes, and establish signs of $L$-parabolicity and $L$-hyperbolicity of the ends of the manifold $\mathcal{M}$ depending on their geometric structure. The signs of hyperbolicity of a manifold play a key role in justifying solvability of the Dirichlet problem, while signs of parabolicity are important for establishing theorems of Liouville type for the manifold.

Keywords: non-compact Riemannian manifold, end of a manifold, Perron's method, equivalence class, spaces $\mathrm{CM}_b$$\mathrm{CM}$.

MSC: 35Jxx, 58J05, 58J32

Received: 29.02.2024
Revised: 14.10.2024
Accepted: 22.10.2024

DOI: 10.4213/faa4209


 English version:
Functional Analysis and Its Applications, 2025, 59:2, 165–193

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026