RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2024 Volume 58, Issue 3, Pages 17–30 (Mi faa4208)

Flat hypercomplex nilmanifolds are $\mathbb H$-solvable

Yu. A. Gorginyanab

a Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
b Laboratory of Algebraic Geometry and its Applications, National Research University "Higher School of Economics" (HSE), Moscow, Russia

Abstract: Let $\mathbb H$ be a quaternion algebra generated by $I,J$ and $K$. We say that a hypercomplex nilpotent Lie algebra $\mathfrak g$ is $\mathbb H$-solvable if there exists a sequence of $\mathbb H$-invariant subalgebras containing $\mathfrak g_{i+1}=[\mathfrak g_i,\mathfrak g_i]$,
$$ \mathfrak g=\mathfrak g_0\supset\mathfrak g_1^{\mathbb H}\supset\mathfrak g_2^{\mathbb H}\supset\cdots\supset\mathfrak g_{k-1}^{\mathbb H}\supset\mathfrak g_k^{\mathbb H}=0, $$
such that $[\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}]\subset\mathfrak g^{\mathbb H}_{i+1}$ and $\mathfrak g_{i+1}^{\mathbb H}=\mathbb H[\mathfrak g_i^{\mathbb H},\mathfrak g_i^{\mathbb H}] $. Let $N=\Gamma\setminus G$ be a hypercomplex nilmanifold with the flat Obata connection and $\mathfrak g=\operatorname{Lie}(G)$. We prove that the Lie algebra $\mathfrak g$ is $\mathbb H$-solvable.

Keywords: nilmanifold, hypercomplex nilmanifold, Obata connection, flat Obata connection.

MSC: 53C26, 53C28, 53C40, 53C55

Received: 20.02.2024
Revised: 06.05.2024
Accepted: 07.05.2024

DOI: 10.4213/faa4208


 English version:
Functional Analysis and Its Applications, 2024, 58:3, 240–250

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026