RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2025 Volume 59, Issue 1, Pages 29–45 (Mi faa4161)

The interlace polynomial of binary delta-matroids and link invariants

Nadezhda Kodaneva

National Research University "Higher School of Economics", Moscow, Russia

Abstract: In this work, we study the interlace polynomial as a generalization of a graph invariant to delta-matroids. We prove that the interlace polynomial satisfies the four-term relation for delta-matroids and thus determines a finite type invariant of links in the $3$-sphere. Using the interlace polynomial, we give a lower bound for the size of the Hopf algebra of binary delta-matroids modulo the $4$-term relations.

Keywords: interlace polynomial, knot and link invariants, binary delta-matroids, graph invariants.

MSC: 05C31, 57K14

Received: 29.09.2023
Revised: 11.03.2024
Accepted: 29.04.2024

DOI: 10.4213/faa4161


 English version:
Functional Analysis and Its Applications, 2025, 59:1, 19–31

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026