RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2022 Volume 56, Issue 4, Pages 109–112 (Mi faa3984)

This article is cited in 7 papers

Brief communications

On an elliptic operator degenerating on the boundary

V. E. Nazaikinskii


Abstract: Let $\Omega\subset\mathbb{R}^n$ be a bounded domain with smooth boundary $\partial\Omega$, let $D(x)\in C^\infty(\overline\Omega)$ be a defining function of the boundary, and let $B(x)\in C^\infty(\overline\Omega)$ be an $n\times n$ matrix function with self-adjoint positive definite values $B(x )=B^*(x)>0$ for all $x\in\overline\Omega$ The Friedrichs extension of the minimal operator given by the differential expression $\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle$ to $C_0^\infty(\Omega)$ is described.

Keywords: wave equation, degeneracy at the domain boundary, Friedrichs extension, essential domain.

UDC: 517.95

Received: 12.02.2022
Revised: 12.02.2022
Accepted: 22.07.2022

DOI: 10.4213/faa3984


 English version:
Functional Analysis and Its Applications, 2022, 56:4, 324–326

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026