RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2022 Volume 56, Issue 2, Pages 82–91 (Mi faa3944)

On the Arens Homomorphism

B. Turana, M. Aslantaşb

a Gazi University, Faculty of Sciences
b Çankiri Karatekin Üniversitesi

Abstract: Let $E$ be a unital $f$-module over an $f$-algebra $A$. With the help of Arens extension theory, a $(A^{\sim})_{n}^{\sim}$ module structure on $E^{\sim}$ can be defined. The paper deals mainly with properties of the Arens homomorphism $\eta\colon(A^{\sim})_{n}^{\sim}\to \operatorname{Orth}(E^{\sim})$, which is defined by the $(A^{\sim})_{n}^{\sim}$ module structure on $E^{\sim}$. Necessary and sufficient conditions for an $A$ submodule of $E$ to be an order ideal are obtained.

Keywords: Riesz space, orthomorphism, $f$-module, Arens homomorphism.

UDC: 517.98

Received: 08.09.2021
Revised: 13.02.2022
Accepted: 19.02.2022

DOI: 10.4213/faa3944


 English version:
Functional Analysis and Its Applications, 2022, 56:2, 144–151

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026