RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2022 Volume 56, Issue 2, Pages 3–9 (Mi faa3906)

Extended Spectra for Some Composition Operators on Weighted Hardy Spaces

I. F. Z. Bensaidab, F. León-Saavedrab, P. Romero de la Rosab

a Département de Mathématiques, Laboratoire d'Analyse Mathématique et Applications, Université d'Oran 1
b Department of Mathematics, University of Cádiz

Abstract: Let $\alpha$ be a complex scalar, and let $A$ be a bounded linear operator on a Hilbert space $H$. We say that $\alpha$ is an extended eigenvalue of $A$ if there exists a nonzero bounded linear operator $X$ such that $AX=\alpha XA$. In weighted Hardy spaces invariant under automorphisms, we completely compute the extended eigenvalues of composition operators induced by linear fractional self-mappings of the unit disk $\mathbb{D}$ with one fixed point in $\mathbb{D}$ and one outside $\overline{\mathbb{D}}$. Such classes of transformations include elliptic and loxodromic mappings as well as a hyperbolic nonautomorphic mapping.

Keywords: Composition operator, extended eigenvalue, weighted Hardy space.

UDC: 517.98

Received: 05.05.2021
Revised: 06.12.2021
Accepted: 14.12.2021

DOI: 10.4213/faa3906


 English version:
Functional Analysis and Its Applications, 2022, 56:2, 81–85

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026