Abstract:
Let $K$ be a compact Hausdorff space, $C(K)$ be the real Banach space of all continuous functions on $K$ endowed with the supremum norm,
and $C(K)^+$ be the positive cone of $C(K)$. A weak stability result for the symmetrization $\Theta=(f(\,\boldsymbol\cdot\,)-f(-\;\boldsymbol\cdot\,)/2$ of a general $\varepsilon$-isometry $f$ from $C(K)^+\cup-C(K)^+$ to a Banach space $Y$
is obtained: For any element $k\in K$, there exists a $\phi\in S_{Y^\ast}$ such that
\begin{equation*}
|\langle\delta_k,x\rangle-\langle\phi,\Theta(x)\rangle|\le3\varepsilon/2\quad\text{for
all }\,x\in C(K)^+\cup-C(K)^+.
\end{equation*}
This result is used to prove new stability theorems for the symmetrization $\Theta$ of $f$.
Keywords:symmetrization of $\varepsilon$-isometry, stability, function space.