RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2018 Volume 52, Issue 2, Pages 40–65 (Mi faa3520)

This article is cited in 7 papers

Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian

V. V. Krylov

Department of Mathematics, National Research University Higher School of Economics, Moscow, Russia

Abstract: Let $G$ be a connected reductive algebraic group over $\mathbb{C}$, and let $\Lambda^{+}_{G}$ be the monoid of dominant weights of $G$. We construct integrable crystals $\mathbf{B}^{G}(\lambda)$, $\lambda\in\Lambda^+_G$, using the geometry of generalized transversal slices in the affine Grassmannian of the Langlands dual group of $G$. We also construct tensor product maps $\mathbf{p}_{\lambda_{1},\lambda_{2}}\colon\mathbf{B}^{G}(\lambda_1)\otimes\mathbf{B}^{G}(\lambda_2) \to\mathbf{B}^{G}(\lambda_{1}+\lambda_{2})\cup\{0\}$ in terms of multiplication in generalized transversal slices. Let $L \subset G$> be a Levi subgroup of $G$. We describe the functor $\operatorname{Res}^G_L\colon\operatorname{Rep}(G)\to\operatorname{Rep}(L)$ of restriction to $L$ in terms of the hyperbolic localization functors for generalized transversal slices.

Keywords: affine Grassmannian, Kashiwara crystals, geometric Satake isomorphism, generalized slices.

UDC: 514.747.2

Received: 03.09.2017

DOI: 10.4213/faa3520


 English version:
Functional Analysis and Its Applications, 2018, 52:2, 113–133

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026