RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2018 Volume 52, Issue 2, Pages 82–85 (Mi faa3496)

This article is cited in 1 paper

Brief communications

On the Convergence of Solutions of Variational Problems with Implicit Pointwise Constraints in Variable Domains

A. A. Kovalevskyab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
b Ural Federal University, Yekaterinburg, Russia

Abstract: Results on the convergence of minimizers and minimum values of integral and more general functionals $J_s\colon W^{1,p}(\Omega_s)\to\mathbb R$ on the sets $U_s(h_s)=\{v\in W^{1,p}(\Omega_s)\colon h_s(v)\leqslant 0\ \text{a.e.\ in }\Omega_s\}$, where $p>1$, $\{\Omega_s\}$ is a sequence of domains contained in a bounded domain $\Omega$ of $\mathbb R^n$ ($n\geqslant 2$), and $\{h_s\}$ is a sequence of functions on $\mathbb R$, are announced.

Keywords: integral functional, variational problem, implicit pointwise constraint, minimizer, minimum value, $\Gamma$-convergence, variable domain.

UDC: 517.972

Received: 29.05.2017

DOI: 10.4213/faa3496


 English version:
Functional Analysis and Its Applications, 2018, 52:2, 147–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026