RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2018 Volume 52, Issue 1, Pages 65–69 (Mi faa3454)

This article is cited in 2 papers

Brief communications

Invariant Subspaces for Commuting Operators on a Real Banach Space

V. I. Lomonosova, V. S. Shul'manb

a Department of Mathematics, Kent State University, Kent, USA
b Department of Higher Mathematics, Vologda State University, Vologda, Russia

Abstract: It is proved that the commutative algebra $\mathcal{A}$ of operators on a reflexive real Banach space has an invariant subspace if each operator $T\in\mathcal{A}$ satisfies the condition
$$ \|1-\varepsilon T^2\|_e\le 1+o(\varepsilon)\ \text{as}\ \varepsilon\searrow 0 $$
where $\|\cdot\|_e$ denotes the essential norm. This implies the existence of an invariant subspace for any commutative family of essentially self-adjoint operators on a real Hilbert space.

Keywords: Banach space, algebra of operators, invariant subspace.

UDC: 517

Received: 09.11.2016

DOI: 10.4213/faa3454


 English version:
Functional Analysis and Its Applications, 2018, 52:1, 53–56

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026