Abstract:
Let $\mathcal{M}$ be a von Neumann algebra equipped with a normal finite faithful normalized trace $\tau$, and let $\mathcal{A}$ be a tracial subalgebra of $\mathcal{M}$. Let $E$ be a symmetric quasi-Banach space on $[0,1]$. We show that $\mathcal{A}$ has an $L_E(\mathcal{M})$-factorization if and only if $\mathcal{A}$ is a subdiagonal algebra.