RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2014 Volume 48, Issue 1, Pages 30–45 (Mi faa3133)

This article is cited in 5 papers

Absence of Solitons with Sufficient Algebraic Localization for the Novikov–Veselov Equation at Nonzero Energy

A. V. Kazeykinaab

a M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b École Polytechnique, Centre de Mathématiques Appliquées

Abstract: It is shown that the Novikov–Veselov equation (an analogue of the KdV equation in dimension $2+1$) at positive and negative energies does not have solitons with space localization stronger than $O(|x|^{-3})$ as $|x|\to\infty$.

Keywords: traveling wave, localized soliton, Novikov–Veselov equation.

UDC: 517.95

Received: 02.01.2012

DOI: 10.4213/faa3133


 English version:
Functional Analysis and Its Applications, 2014, 48:1, 24–35

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026