RUS
ENG
Full version
JOURNALS
// Funktsional'nyi Analiz i ego Prilozheniya
// Archive
Funktsional. Anal. i Prilozhen.,
2014
Volume 48,
Issue 1,
Pages
30–45
(Mi faa3133)
This article is cited in
5
papers
Absence of Solitons with Sufficient Algebraic Localization for the Novikov–Veselov Equation at Nonzero Energy
A. V. Kazeykina
ab
a
M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b
École Polytechnique, Centre de Mathématiques Appliquées
Abstract:
It is shown that the Novikov–Veselov equation (an analogue of the KdV equation in dimension
$2+1$
) at positive and negative energies does not have solitons with space localization stronger than
$O(|x|^{-3})$
as
$|x|\to\infty$
.
Keywords:
traveling wave, localized soliton, Novikov–Veselov equation.
UDC:
517.95
Received:
02.01.2012
DOI:
10.4213/faa3133
Fulltext:
PDF file (216 kB)
References
Cited by
English version:
Functional Analysis and Its Applications, 2014,
48
:1,
24–35
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026