RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2013 Volume 47, Issue 2, Pages 27–37 (Mi faa3107)

This article is cited in 4 papers

Absence of Eigenvalues for the Periodic Schrödinger Operator with Singular Potential in a Rectangular Cylinder

I. Kachkovskii

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We consider the periodic Schrödinger operator on a $d$-dimensional cylinder with rectangular section. The electric potential may contain a singular component of the form $\sigma(x,y)\delta_{\Sigma}(x,y)$, where $\Sigma$ is a periodic system of hypersurfaces. We establish that there are no eigenvalues in the spectrum of this operator, provided that $\Sigma$ is sufficiently smooth and $\sigma\in L_{p,\operatorname{loc}}(\Sigma)$, $p>d-1$.

Keywords: Schrödinger operator, periodic coefficients, absolutely continuous spectrum.

UDC: 517.984.56

Received: 05.12.2012

DOI: 10.4213/faa3107


 English version:
Functional Analysis and Its Applications, 2013, 47:2, 104–112

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026