RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2012 Volume 46, Issue 2, Pages 66–82 (Mi faa3073)

This article is cited in 3 papers

Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$

D. A. Popovab

a M. V. Lomonosov Moscow State University
b A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University

Abstract: Let the standard Riemannian metric of constant curvature $K=-1$ be given on a compact Riemannian surface of genus $g>1$. Under this condition, for a class of strictly hyperbolic Fuchsian groups, we obtain an explicit expression for the spectral counting function of the Laplace operator in the form of a series over the zeros of the Selberg zeta function.

Keywords: Selberg zeta function, spectral counting function, strictly hyperbolic group.

UDC: 517.984.5

Received: 24.02.2011

DOI: 10.4213/faa3073


 English version:
Functional Analysis and Its Applications, 2012, 46:2, 133–146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026