RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2012 Volume 46, Issue 1, Pages 49–64 (Mi faa3059)

This article is cited in 1 paper

Systems of Correlation Functions, Coinvariants, and the Verlinde Algebra

E. B. Feiginab

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Independent University of Moscow

Abstract: We study the Gaberdiel–Goddard spaces of systems of correlation functions attached to affine Kac–Moody Lie algebras $\widehat{\mathfrak{g}}$. We prove that these spaces are isomorphic to spaces of coinvariants with respect to certain subalgebras of $\widehat{\mathfrak{g}}$. This allows us to describe the Gaberdiel–Goddard spaces as direct sums of tensor products of irreducible $\mathfrak{g}$-modules with multiplicities determined by the fusion coefficients. We thus reprove and generalize the Frenkel–Zhu theorem.

Keywords: affine Lie algebra, vertex operator algebra, Zhu algebra.

UDC: 512.818.4

Received: 29.03.2010

DOI: 10.4213/faa3059


 English version:
DOI: 10.1007/s10688-012-0005-5

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026