RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2011 Volume 45, Issue 1, Pages 79–83 (Mi faa3024)

This article is cited in 8 papers

Brief communications

Geometry of Cesàro Function Spaces

S. V. Astashkina, L. Maligrandab

a Samara State University
b Luleå University of Technology

Abstract: Geometric properties of Cesàro function spaces $\operatorname{Ces}_{p}(I)$, where $I=[0,\infty)$ or $I=[0,1]$, are investigated. In both cases, a description of their dual spaces for $1<p<\infty$ is given. We find the type and the cotype of Cesàro spaces and present a complete characterization of the spaces $l^q$ that have isomorphic copies in $\operatorname{Ces}_{p}[0,1]$ ($1\le p<\infty$).

Keywords: Cesàro space, Köthe dual space, dual space, $q$-concave Banach space, type and cotype of a Banach space, Dunford–Pettis property.

UDC: 517.982.27+517.982.25

Received: 06.03.2009

DOI: 10.4213/faa3024


 English version:
Functional Analysis and Its Applications, 2011, 45:1, 64–68

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026