Abstract:
Geometric properties of Cesàro function spaces $\operatorname{Ces}_{p}(I)$, where $I=[0,\infty)$ or
$I=[0,1]$, are investigated. In both cases, a description of their dual spaces for $1<p<\infty$ is
given. We find the type and the cotype of Cesàro spaces and present a complete characterization
of the spaces $l^q$ that have isomorphic copies in $\operatorname{Ces}_{p}[0,1]$ ($1\le p<\infty$).
Keywords:Cesàro space, Köthe dual space, dual space, $q$-concave Banach space, type and cotype of a Banach space, Dunford–Pettis property.