RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2010 Volume 44, Issue 1, Pages 83–87 (Mi faa2953)

This article is cited in 13 papers

Brief communications

Multidimensional Version of M. A. Krasnosel'skii's Generalized Contraction Principle

A. I. Perov

Voronezh State University

Abstract: Let $M$ be a complete $K$-metric space with $n$-dimensional metric $\rho (x,y)\colon M\times M\to\mathbb{R}^n$, where $K$ is the cone of nonnegative vectors in $\mathbb{R}^n$. A mapping $F\colon M\to M$ is called a $Q$-contraction if $\rho (Fx,Fy)\le Q\rho (x,y)$, where $Q\colon K\to K$ is a semi-additive absolutely stable mapping. A $Q$-contraction always has a unique fixed point $x^*$ in $M$, and $\rho (x^*,a)\le (I-Q)^{-1}\rho(Fa,a)$ for every point $a$ in $M$. The point $x^*$ can be obtained by the successive approximation method $x_k=Fx_{k-1}$, $k=1,2,\dots$, starting from an arbitrary point $x_0$ in $M$, and the following error estimates hold: $\rho(x^*,x_k)\le Q^k(I-Q)^{-1}\rho(x_1,x_0)\le (I-Q)^{-1}Q^k\rho(x_1,x_0)$, $k=1,2,\dots$ . Generally, the mappings $(I-Q)^{-1}$ and $Q^k$ do not commute. For $n=1$, the result is close to M. A. Krasnosel'skii's generalized contraction principle.

Keywords: $K$-metric space, semi-additive mapping, $Q$-contraction, contraction mapping principle.

UDC: 517.988.63

Received: 30.01.2008

DOI: 10.4213/faa2953


 English version:
Functional Analysis and Its Applications, 2010, 44:1, 69–72

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026