RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2009 Volume 43, Issue 2, Pages 79–83 (Mi faa2948)

This article is cited in 3 papers

Brief communications

A Realization Theorem in the Context of the Schur–Szegő Composition

V. P. Kostov

Université de Nice Sophia Antipolis

Abstract: Every real polynomial of degree $n$ in one variable with root $-1$ can be represented as the Schur–Szegő composition of $n-1$ polynomials of the form $(x+1)^{n-1}(x+a_i)$, where the numbers $a_i$ are uniquely determined up to permutation. Some $a_i$ are real, and the others form complex conjugate pairs. In this note, we show that for each pair $(\rho,r)$, where $0\le \rho,r\le [n/2]$, there exists a polynomial with exactly $\rho$ pairs of complex conjugate roots and exactly $r$ complex conjugate pairs in the corresponding set of numbers $a_i$.

Keywords: polynomial, Schur–Szegő composition.

UDC: 512.622

Received: 26.10.2007

DOI: 10.4213/faa2948


 English version:
Functional Analysis and Its Applications, 2009, 43:2, 147–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026